1. Any seven from:
α-particle scattering suitable diagram with source, foil, moveable detector
2 or more trajectories shown vacuum
most particles have little if any deflection
large deflection of very few
reference to Coulomb's law /elastic scattering
alphas repelled by nucleus (positive charges)
monoenergetic
OR electron scattering
High energy diagram with source sample, moveable detector / film
Vacuum
Electron accelerator or other detail
Most have zero deflection
Characteristic angular distribution with minimum
Minimum not zero
De Broglie wavelength
Wavelength comparable to nuclear size hence high energy
B1 $\times 7$
Clearly shows how evidence for the size of the nucleus follows from what is described. (1)
2. (a) He nucleus, a few $\mathrm{cm} / 3$ to 10 cm
About $1 \mathrm{~m} / 0.3$ to $2 \mathrm{~m} /$ several $\mathrm{m}, 1$ to $10 \mathrm{~mm} \mathrm{Al} / 1 \mathrm{~mm} \mathrm{~Pb}$ (high energy) e-m radiation, 1 to 10 cm of $\mathrm{Pb} /$ several m of concrete only 2 correct 1 mark, only 4 correct 2 marks
B3
(b) Source, absorbers placed in front of detector on diagram B1Explanation of how results identify the source(2 marks possible)B2Allowance for background (max 2)(allow for distance expt to a max 2)
3. description:
(4) hydrogen or light nuclei/protons are fused together to form a helium/heavier/larger nucleus; (1)
two positrons must also be released; to conserve charge; (2)
the process is more complicated than the summary equation suggests/AW;
mass reduction provides energy release/ $\Delta \mathrm{m}=\Delta \mathrm{E} / \mathrm{c}^{2}$ (1)
the process requires very high temperatures (to bring the protons together); (1)
normally achieved inside a star; only by man in a bomb so far; (1)
comparison: (2)
Energy release in fusion is much greater than in radioactive decay;
because mass reduction/change in fusion is much greater than in radioactive (1)
decay/AW; (1)
as the helium nucleus is so strongly bound; (1)
also energy release from annihilation of positrons; (1) max 5
Quality of Written Communication 2
4. (a) number of decayed $\mathrm{U}-238$ nuclei $=1 / 2 \times$ number of undecayed $\mathrm{U}-238$ nuclei; (1) so $1 / 3$ of U-238 has decayed and $2 / 3$ of U-238 has not decayed; (1) (so ratio $=2 / 3$)
(b) either $\lambda=0.693 / T_{1 / 2}=0.693 /\left(4.47 \times 10^{9}\right)\left(=1.55 \times 10^{-10} \mathrm{y}^{-1}\right)$ subs. (1)
$N=N_{0} \mathrm{e}^{-\lambda t}$ so $N / N_{0}=\mathrm{e}^{-\lambda t}$ and $\ln \left(N / N_{0}\right)=-\lambda t$
$\ln (0.667)=-1.55 \times 10^{-10} t \quad$ alg. $/$ arith. (1)
so $t=2.61 \times 10^{9} \mathrm{y} \quad$ ans. (1)
or $\quad N / N_{0}=(1 / 2)^{x}$ so $0.667=(1 / 2)^{x}$ and $\ln (0.667)=x \ln (0.5)$
and $\quad x=0.584$ then $t=x T_{1 / 2}=0.584 \times 4.47 \times 10^{9}=2.61 \times 10^{9} \mathrm{y}$
(c) either $N_{0}=(5.00 / 238) \times 6.02 \times 10^{23}$ subs. (1)
$=1.26 \times 10^{22}$ atoms ans. (1)
2
or $\quad N_{0}=\left(5.00 \times 10^{-3}\right) /\left(1.67 \times 10^{-27} \times 238\right)(1)$
$=1.26 \times 10^{22}$ atoms (1)
(d) exponential decay graph for U : starts from N_{0} and approaches t axis; (1)
exponential growth of Pb from zero: approaches a constant value of N_{0}; (1)
lines sensibly 'mirror images'; (1)
5. (a) Rb 94

Cs 55
U143
-1 for each error
B2
(b) Values from graph: U 7.4 MeV allow 7.3 to 7.4

Rb 8.6 MeV allow 8.5 to 8.6
C1
Cs 8.4 MeV
Total binding energies: U 235×7.4 (1739)
$\mathrm{Rb} 94 \times 8.6$ (808)
B2
Cs 142×8.4 (1193)
Total energy released $=808+1193-1739$ $=262 \mathrm{MeV}$
allow $8.6+8.4-7.4=9.4 \mathrm{MeV}$ for 1 mark only
6. confines / pulls together plasma / nuclei / ions / nucleons / protons; (1) so increases density/ concentration / number per unit volume; (1) and increases frequency / number of collisions among nuclei; (1) gravitational attraction heats plasma / gravitational p.e. changed to heat; (1) any 3
7. (a) (i) to come to rest simultaneously, total mtm. $=0$ or AW (1) (but initial mtm. not zero)
(ii) initial mtm. $=3 m u-2 m u=m u$ (1)
when closest, mtm. $=(3 m+2 m) v(1)$
so $5 m v=m u$ (and $v=u / 5)$
(b) (i) initial k.e. $=$ final k.e. $+($ gain of $)$ p.e. (1)
(ii) \quad k.e. $=1 / 2 m v^{2}(1)$
total k.e. $=1 / 2 \times 3 m u^{2}+1 / 2 \times 2 m u^{2}\left(=2.5 m u^{2}\right)(1)$ $=2.5 \times 1.67 \times 10^{-27} u^{2}\left(=4.18 \times 10^{-27} u^{2}\right)(1)$
allow $m=1.66 \times 10^{-27} \mathrm{~kg}$ for full credit
(iii) gain of p.e. $=$ initial k.e. - final k.e.

$$
\begin{aligned}
& \frac{\left(1.6 \times 10^{-19}\right)^{2}}{\left(4 \pi \times 8.85 \times 10^{-12} \times 1.5 \times 10^{-15}\right)}=4.18 \times 10^{-27} u^{2}-4.18 \times 10^{-27}(u / 5)^{2}(2) \\
& 1.53 \times 10^{-13}=4.01 \times 10^{-27} u^{2}(1) \text { algebra } \\
& u=6.18 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}(1) \\
& \text { omits }-4.18 \times 10^{-27}(u / 5)^{2}, \text { gets } u=6.06 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}: 1 / 2,1,1=3 / 4
\end{aligned}
$$

8.

(a) ${ }^{239}{ }_{92} \mathrm{U} \rightarrow{ }^{239}{ }_{93} \mathrm{~Np}+{ }_{-1}{ }_{-1} \mathrm{\beta} /{ }^{0}{ }_{-1} \mathrm{e}+\bar{v}$
allow ${ }_{92}^{238} \mathrm{U}+{ }_{0}^{1}{ }_{0}$ n on LHS
${ }^{239}{ }_{93} \mathrm{~Np} \rightarrow{ }^{239}{ }_{94} \mathrm{Pu}+{ }_{-1}^{0} \beta /{ }_{-1} \mathrm{e}+\bar{v}$ (1)
allow neutrino instead of antineutrino omits neutrino altogether - gets $1 / 2$
(b) straight line starts from zero and reaches 1.08×10^{13} at $t=6.0 \times 10^{5}$ s or equivalent (1)
(c) (i) rate of decay increases with time; (1)
because rate of decay increases with / is proportional to number of nuclei; (1)
(ii) (eventually) rate of decay (of $\left.{ }^{239}{ }_{93} \mathrm{~Np}\right)=$ rate of formation (1)
(iii) $\quad \mathrm{d} N / \mathrm{d} t=(-) \lambda N$ equation (1)
$\lambda=0.693 / T 1 / 2$
so $N=(\mathrm{d} N / \mathrm{d} t) / \lambda=1.8 \times 10^{7} /\left(0.693 /\left[2.04 \times 10^{5}\right]\right)$ subs. (1)
$=5.3 \times 10^{12}$ ans. (1)
calculation of λ gets $1 / 3$
(iv) correctly curved from zero to $\left(5.3 \times 10^{12}\right)$ or less (1)
9. (i) 3 points plotted; any point incorrect loses this mark 1
(ii) curve through 3 points and heads down towards zero; (1) line peaks between Br and origin; (1)
(iii) BE per nucleus of ${ }^{235}{ }_{92} \mathrm{U}=7.60 \times 235(=1786 \mathrm{MeV})$ $B E$ of products $\quad=8.20 \times 146+8.60 \times 87 \quad$ both lines (1)

$$
(=1197+748 \mathrm{MeV})
$$

so energy released $\quad=(1197+748)-1786(1)$

$$
=159 \mathrm{MeV} \text { (1) }
$$

omits multiplication by nucleon number to get 9.2 MeV gets $0,1,0=1$3

